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a b s t r a c t

A detailed numerical simulation for electron-beam heating of n-doped silicon is presented. Electron-
beam penetration is modeled using electron-beam transport equation (EBTE). The EBTE is solved by using
a Monte Carlo (MC) method to determine the electron deposition distributions, including electron density
deposition and optical phonon generation. Electron and phonon temperatures of the film are then deter-
mined using electron–phonon hydrodynamic equations (EPHDEs) coupled with the deposition distribu-
tions obtained from the MC simulation. The combined EBTE and EPHDEs results indicate that an electron
beam creates a depletion region near the surface of incidence and causes non-equilibrium between elec-
tron and phonon temperatures.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Electron beams have been used extensively for material pro-
cessing since 1950s [1]. A typical electron-beam energy for this
application is in the order of kilo-electronvolts (keV) or mega-elec-
tronvolts (MeV) where melting and evaporation of a target mate-
rial can be achieved, and hence material removal is possible.
Electron beams are also used for imaging purposes and material
diagnostics; in these cases, kilo-electronvolt (keV) electron beams
are employed with minute amount of electric current density [2].
Effectively, the measurement and characterization of scattered
electrons from the workpiece constitute the operation principles
of scanning electron microscopy (SEM), transmission electron
microscopy (TEM), and electron energy loss spectroscopy (EELS)
applications. The ever-advancing technology in these areas has so
far improved significantly understanding and modeling of electron
interactions with solids, which is typically handled using the
Monte Carlo (MC) simulation [3–5]. However, predicting electron
and lattice temperatures of the target material as a result of elec-
tron-beam heating still requires additional research. Most of the
current attempts to determine the temperature distribution of
the workpiece/substrate rely on the Fourier law which assumes a
linear relationship between the heat flux and the temperature gra-
dient. Using this classical, yet simple approach, the coupling be-
tween the electron beam and heat conduction is achieved, where
electrons and the lattice are assumed to be at the same tempera-
ll rights reserved.
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ture [6,7]. In more recent studies, the so-called two-temperature
model is employed where separate electron and phonon tempera-
tures are considered [8]. These approaches are applicable if the
electron removal from the material due to the generation of sec-
ondary electron is not significant and when there are no applied
voltages across the material. If the electron removal is significant
that causes changes to the local electron density, both the electron
and phonon temperature distributions would be altered, and nei-
ther the classical Fourier Law nor a two-temperature model would
be able to simulate the physics. In this paper, we aim to consider
such a complex case where the electrons received from an electron
beam and the electrons due to the applied voltage are considered
to alter the energy balance in n-doped silicon.

In previous studies, we have already coupled the electron-beam
transport equation (EBTE), solved using the MC simulation
[4,5,9,10] with the classical and two-temperature heat conduction
equations to study the heating effect of energetic electron beams
[6–8]. These simulations have shown that local temperatures of
the target material (or workpiece) could be elevated significantly
when an electron beam with high energy flux was utilized. How-
ever, in these studies, and the density of the external electrons
(i.e., from the electron beam) were not included, implying that
charge accumulation (or depletion) was neglected. In order to
determine these additional effects induced by an electron beam,
a modified electron-beam MC simulation, which can predict the
deposition of electron population and energy on a target material,
is required. These deposition distributions describe the physics of
high-energy electron propagation. When electrons are attenuated
to lower energy levels, the effects of thermal conduction and elec-
tric field become dominant in the transport. This is where the elec-
tron–phonon hydrodynamic equations (EPHDEs) [5,11] take over
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Nomenclature

a0 Bohr radius [m]
B Gaussian distribution [-]
C heat capacity [J/m3 K]
c speed of light [m/s]
E electron energy [eV]
Ebeam initial electron-beam energy [eV]
E
*

electric field vector [V/m]
E coulomb charge [C]
�h reduced Planck’s constant [J s]
k electron wave number [1/m]
k thermal conductivity [W/m K]
kB Boltzmann’s constant [eV/K or J/K]
l mean free path [m]
I intensity [W/m2 sr]
Ibeam electric current of the electron beam [C/s]
m mass of electron [kg]
n electron density [1/m3]
N total number of statistical ensembles [-]
Pe electron momentum [kg m/s]
Q scattering cross section [m2]
q wave number (loss or gain) [1/m]
R cumulative probability distribution function [-]
Ran a random number [-]
Rbeam 1/e2-radius of the Gaussian distribution [m]
S scattering distance [m]
T temperature [K]
T transmission function [-]
U0 surface potential (=EF + U) [eV]
v velocity [m/s]
dV volume of a computational element [m3]
W total average electron energy (i.e., internal + kinetic)

[eV]

Symbols
b angle with respect to surface normal [rad]
/ electric potential [V]
x frequency [rad/s]
e permittivity [F/m]
s relaxation time [s]
H scattering angle [rad]
r scattering coefficient [1/m]
X solid angle [sr]
U work function [eV]
Ue electron phase function [-]

Subscripts
A acoustic
D doped
e electron
eff effective
el elastic
F Fermi
inel inelastic
LO longitudinal optical
m momentum
MC Monte Carlo
Nor normalized
ph phonon

Superscripts
0 indicates after collision/scattering
prev previous

Fig. 1. A simple schematic illustrating the physical problem and several parameters
considered in the simulation: an electron beam impinges perpendicularly on a gold
workpiece.
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the role of describing the physics of low-energy electron propaga-
tion. Therefore, results from the MC simulations of the EBTE need
to be coupled with EPHDEs so that heating effect of the electron
beam can be studied thoroughly in terms of electric field and ther-
mal gradient generated by the electron beam. These models are
discussed thoroughly in the next section.

2. Numerical solution methodology

In this paper, we specifically consider the heating of n-doped
silicon (as a workpiece) by a continuous electron beam with pre-
scribed spatial beam width, energy, and electric current. The elec-
tron beam is assumed to be originated from any electron source
with known initial kinetic energy, Ebeam. The beam is directed per-
pendicularly on the workpiece and its area of incidence follows a
Gaussian distribution with a 1/e2-radius (denoted as Rbeam). The
dimensions are selected such that the workpiece is considered as
semi-infinite in width and depth for the electron-beam propaga-
tion, and hence electron transmission is not permitted. A simple
schematic of the problem is depicted in Fig. 1.

A flowchart of the numerical solution methodology employed
by this study is depicted in Fig. 2. In order to determine the tem-
perature distribution inside the workpiece, there are two aspects
of the problem to be investigated. First, the modeling of electron-
beam propagation is required following the EBTE, which includes
predictions of electron-density deposition and optical-phonon
generation as the electron beam transfers energy and momentum
to the material along the penetration path. A MC simulation of
the EBTE is used for this purpose. Since the initial electron-beam
energy is in the order of sub-kilo-electronvolts (keV), which are
naturally much higher than the energy change induced by the tem-
perature gradient and the electric field considered in this applica-
tion, it is possible to model the electron-beam propagation
independently and obtain a steady-state electron deposition distri-
butions, which are then treated as source generations in the EPH-
DEs. The EPHDEs then determine the electric field, electron density
and velocity, and temperature distributions of electrons and pho-
nons (i.e., optical and acoustic) inside the material by coupling
propagations of all these heat carriers accordingly. This is the ap-
proach that the current work emphasizes on. However, if the elec-
tron-beam heating is to be solved rigorously and this would be the
case when the temperature gradient and the electric field become



Fig. 2. The numerical solution methodology employed in the current study is given, detailing the coupling between solutions of the EBTE and EPHDEs. The scenario indicated
by the dash line is not considered in this study.

2634 B.T. Wong, M.P. Mengüç / International Journal of Heat and Mass Transfer 52 (2009) 2632–2645
large enough to affect the beam, the electron-beam propagation
needs be solved simultaneously with the EPHDEs where electron
and phonon temperatures affect the electron-beam deposition
rate, and vice versa. This may require iterations between solutions
of the MC simulation and the EPHDEs, which is beyond the scope of
the current work and can be investigated in the future to enhance
the present concept.
2.1. Monte Carlo simulation of electron-beam transport equation

Our first objective is to determine the electron deposition pro-
files, such as the electron density and optical-phonon generation
within the material. In order to achieve this goal, the EBTE needs
to be solved along the beam path. Without any external electric
field applied to the beam, the EBTE can be expressed as [5]:

@Ie

@t
þ v

*

e � r r
*Ie ¼ �½rinelðEÞ þ relðEÞ�veIe

þ
R

E0
R

X0 ½rinelðE0ÞUinelðE0;X0 ! E;XÞI0ev 0e�dX0dE0

4p

þ
R

E0
R

X0 ½relðE0ÞUelðE0;X0 ! E;XÞI0ev 0e�dX0dE0

4p
;

ð1Þ

which is similar to the radiative transfer equation (RTE) except that
the scattering properties are dependent on electron energy [10]. The
EBTE is an integro-differential equation, and it is cumbersome to
obtain an analytical (or even numerical) solution without imposing
any simplification to the intensity of the beam. The best method of
solving this type of equation is to use a statistical approach, which is
often termed the MC method. In this study, a MC simulation algo-
rithm for electron-beam propagation is developed using the Mott’s
elastic scattering cross section [12] and the Penn’s dielectric func-
tion [13,14]. This MC simulation is different from our previous pub-
lished work in terms of treating absorption and scattering of the
electron beam, and it is an improved version. The MC simulation
basically determines the trajectories of electrons originated from
the electron beam as they go through a series of elastic and inelastic
scattering events by atoms and electrons inside the material. Elec-
trons are traced until their energies become low enough where
electron–phonon scattering becomes dominant, and that the elec-
trical and thermal responses of the material become important in
describing the low-energy electron transport.

First, we provide a brief summary of the MC simulation proce-
dures; details can be found elsewhere [3,5,9,10]. A MC simulation
starts with initializations of statistical ensembles such as the initial
electron energy, launching location, and penetrating direction.
These statistical ensembles represent a tiny fraction of the entire
electron beam in terms of energy. The simulation proceeds with
launching of these ensembles one after another independently un-
til the last ensemble. The wave interference effect is not accounted
in the simulation since the wavelength of the electron beam con-
sidered is much smaller than the characteristic length of the target
object.

A Gaussian distribution is considered for the incident electron
beam, given:
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BðrÞ ¼ 2
pR2

beam

e�2ðr=RbeamÞ2 ; ð2Þ

where the exponential is equal to 1/e2 at Rbeam. Even though a spa-
tial Gaussian profile is assumed for electron beam, we do not con-
sider any temporal variation, meaning that the beam power is
always continuous. In the MC simulation, r is decomposed into x
and y so that the Cartesian coordinate is used to keep track of the
positions of the ensembles. To obtain MC results for an electron
beam following a Gaussian distribution, results are first obtained
for the case where all the ensembles are launched in the exact same
position (i.e., impulse beam profile). Convolution is then used be-
tween these results and the Gaussian beam profile given in Eq. (2)
to generate final desired results. This method is generally more effi-
cient since the number of ensembles required to compute smooth
statistical distribution is lesser.

In MC simulations, each statistical ensemble is tracked until
either it exits the medium or its energy falls below a threshold va-
lue (=Ethreshold). The threshold value is chosen to be the band gap of
silicon in this case, which is approximately 1 eV. After launching,
statistical ensembles suffer a series of scattering events within
the medium. These events can be either elastic or inelastic depend-
ing on the various scattering probabilities derived according to the
properties of the material and random numbers. Elastic scattering
simply redirects the propagating direction of an ensemble while
inelastic changes its energy in addition to its direction.

Each statistical ensemble is allowed to travel for a certain
amount of distance before it is scattered elastically or inelastically
by the medium. This distance is termed the scattering distance, Seff,
and its cumulative probability distribution function (CPDF) is given
as:

RðSeff Þ ¼ expð�Seff =leff Þ; ð3Þ

where leff is the effective mean free path computed from elastic and
total inelastic mean free path (i.e., lel and linel,total, respectively):

l�1
eff ¼ l�1

el þ l�1
inel;total: ð4Þ

The total inelastic scattering mean free path includes that of the
optical phonon emission, linel,LO, and the mean free path of elec-
tron–electron scattering, linel,e-e. By inverting Eq. (3) and replacing
the CPDF with a random number, the scattering distance can be ex-
pressed as

Seff ¼ �leff lnðRanSÞ; ð5Þ

where RanS is a random number.
Upon interaction, another random number, Ranl,1, is used to

determine whether the event is elastic or inelastic. The electron
is scattered elastically if Ranl;1 < l�1

el =l�1
eff and inelastically if

Ranl;1 P l�1
el =l�1

eff . If the scattering is inelastic, an additional random
number, Ranl,2, will be drawn to determine whether it is of elec-
tron–electron interaction or optical phonon emission. If
Ranl;2 P l�1

inel;LO=l�1
inel;total, it is an electron-electron scattering; other-

wise it is an optical phonon emission. When the inelastic scattering
is of electron–electron type, the amount of kinetic energy loss
needs to be determined from the probability of inelastic scattering
per unit length and energy change (i.e. dl�1

inel=dðDE0Þ). The CPDF for
the amount of energy change is then expressed using this probabil-
ity as [3,5]:

R ¼
Z DE

0

dl�1
inel

dðDE0Þ
dðDE0Þ=

Z E�EF

0

dl�1
inel

dðDE0Þ
dðDE0Þ; ð6Þ

The limits of the integration correspond to the possible amount
of kinetic energy loss of electrons, which ranges from none to the
difference between the current kinetic energy E and the Fermi en-
ergy EF of the target material. Next the scattering direction is deter-
mined according to the type of the scattering event. The CPDF of
the elastic scattering is derived from the Mott scattering cross sec-
tion, while the CPDF of the inelastic scattering requires the use of
dielectric theory.

The above MC simulation procedures remain unaltered for any
given material except the scattering properties. These properties
change depending on the material and are discussed in the next
section. Several details regarding the MC simulation procedures,
for example, the derivation of the direction cosines needed for
tracking the ensembles and sampling techniques for the scattering
direction, are not mentioned to keep the manuscript within rea-
sonable length. These derivations are outlined by Wang et al.
[15], Ding and Shimizu [3], and Wong and Mengüç [5].
2.1.1. Elastic scattering (Mott cross section)
The electron scattering properties are the most crucial informa-

tion in simulating electron-beam propagation for different types of
materials. Elastic and inelastic scattering properties are needed in
the simulation; each requires different derivation to represent
the scattering process with correct physics. Elastic scattering prob-
ability is obtained from Mott’s scattering cross section while
inelastic scattering probability is derived from the Penn’s dielectric
function. The Mott elastic differential scattering cross section with-
out the polarization effect is typically expressed in the form [12]:

dQelðH; kÞ
dX

¼ jf j2 þ jgj2: ð7Þ

The scattering factors f and g are functions of a scattering polar
angle H, and they are given as:

f ðH; kÞ ¼ 1
2ik

X1
l¼0

ðlþ 1Þ½e2id�l�1 � 1� þ l e2idl � 1
� �� �

Plðcos HÞ; ð8Þ

gðH; kÞ ¼ 1
2ik

X1
l¼1

�e2id�l�1 þ e2idl
� �

P�l ðcos HÞ: ð9Þ

Here, Pl’s and P�l ’s are the ordinary Legendre polynomials and
the associated Legendre polynomials, respectively, and dl’s are
the Dirac phase shifts. The Dirac phase shifts are obtained by solv-
ing the Dirac equation, which describes the relativistic behavior of
an electron, including its spin, the magnetic moment of the elec-
tron, and the spin–orbit coupling. Details on how to derive and
solve the Dirac equation are described by Lin et al. [16]. In Eqs.
(9) and (10), k represents the wave number of the electron with en-
ergy E. They are related according to:

k2 ¼ ðE
2 �m2c4Þ

�h2c2
; ð10Þ

where �h is angular Planck’s constant, c is the speed of light, and m is
the mass of electrons. Once the elastic scattering cross section is
determined from Eq. (7), the scattering phase function is calculated
as [5]:

UelðH; EÞ ¼
4p

Qel;totalðEÞ
dQelðH; EÞ

dX
; ð11Þ

where

Qel;totalðEÞ ¼
Z

X¼4p

dQelðH; EÞ
dX

dX; ð12Þ

Since it is difficult to invert Eq. (7) directly to obtain a scattering
angle H, a look-up table listing the CPDF and the corresponding H
is needed. This way, whenever a random number of drawn, a cor-
responding H can be found from the table (see Wong and Mengüç
[5] for details). The elastic mean free path of the electron is derived
from the following expression:



Fig. 3. The dielectric loss function as derived from the optical data found in
handbook compiled by Palik [18].
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lelðEÞ ¼
A

NaqQ el
e;totalðEÞ

; ð13Þ

where A is the atomic weight, Na the Avogadro number, q the den-
sity of the material, and (Naq/A) the number of atoms per unit vol-
ume. Table of Mott scattering cross section data are made available
by Joy [17]; these data are used in the current MC simulations.

2.1.2. Inelastic scattering (Penn’s dielectric function)
In the event of inelastic scattering, electrons lose kinetic energy

and change direction of propagation. The direction change of the
electron by this type of scattering mechanism is typically small.
The inelastic scattering probability can be derived from the en-
ergy-loss function at different energy levels or wavelengths. Since
the energy-loss function is a measure of responses of electrons and
atoms in a medium as a whole when the medium is exposed to an
external disturbance, it can be considered as more accurate com-
pared to other independent formulations. Therefore, having accu-
rate optical constants of the material is very important since the
energy-loss function is derived from the optical constants at differ-
ent energy levels.

The dielectric formulation starts from the double differential
inelastic scattering cross section, which is expressed as [14]:

d2l�1
inel

dð�hxÞdq
¼ 1

pa0E
Im � 1

eðq;xÞ

� �
1
q
: ð14Þ

The imaginary part (denoted as Im[�]) of the negative inverse of
the dielectric function e(q,x) in the equation describes the proba-
bility of energy loss. It is an extrapolated energy-loss function for
different wave number, q, and frequency, x, obtained by deriving
from the energy-loss function at q = 0. The energy-loss function
of silicon used in this work is shown in Fig. 3, which is derived from
the optical data provided by Palik [18]. The probability of an elec-
tron suffering an inelastic scattering event per unit path length and
per unit energy change is then obtained using Eq. (14) after inte-
gration over all possible wave numbers q of the excited plasmons,
and using the energy and momentum transfer conservation, which
is given as [3]:

dl�1
inel

dðDEÞ ¼
1

paoE

�
Z 1

0

�hxp

ðDEÞ2 � ð�hxpÞ2 þ ½ð�h�qÞ2=2m0�2
Im

�1
eðxpÞ

� �(

�H
�h2

2m0
ð2k�q� �q2Þ � DE

" #)
dð�hxpÞ; ð15Þ

if the following plasmon dispersion equation is assumed [13]:

x2
qðq;xpÞ ¼ x2

p þ
1
3

v2
F ðxpÞq2 þ �hq2

2m0

� 	2

: ð16Þ

Here, �q is the positive solution of the dispersion relation
x = xq(�q;xp), E ¼ ð�hkÞ=2mandDE ¼ �hx. The inelastic mean free
path of the electron can then be obtained by integrating the cross
section over all energy changes:

l�1
inel ¼

Z E�EF

0

dl�1
inel

dðDEÞdðDEÞ: ð17Þ

Note that linel depends on the kinetic energy of the electrons.
Details of the derivation of the inelastic scattering cross section
are readily available elsewhere [3].
2.1.3. Electron-optical-phonon scattering
Electron-optical-phonon (e-LO) scattering is important as it is

this mechanism which allows the electron beam to lose its energy
to the lattice. If energy from the electron beam is transferred to the
lattice, the temperature of the target material is increased. This in-
crease can be slow or abrupt depending on the spatial current den-
sity of the beam. To be able to include the electron–phonon
scattering in the MC simulation, a proper derivation of scattering
probability is needed. A simple expression is used for the scattering
probability, and the e-LO scattering rate is derived using [19]:

1
se-LO

¼ m1:5
e u2ffiffiffi

2
p

pq�h3x0

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ �hx0

p
þ ðf þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ �hx0

ph i
; ð18Þ

where / is the optical deformation potential, assumed to be 9 eV/Å
for silicon [20]. When an electron undergoes an e-LO scattering, a
LO-phonon is more likely to be created than destroyed, since elec-
trons from the electron beam possess relatively high energy. There-
fore, an electron is assumed to lose a fixed amount of energy when
such scattering occurs, which corresponds to LO-phonon energy in
the material (i.e., 62 meV for silicon [21,22]). Electrons also lose en-
ergy by creating secondary electrons and generating LO-phonons
until their energies fall below the threshold energy. By tracking
the motion of these electrons, we can determine the electron den-
sity and the LO-phonon generation inside the thin film and account
for these distributions in the EPHDEs where temperature field can
be computed.

2.1.4. Calculations of electron density deposition and optical phonon
generations

In the MC simulation, each statistical ensemble represents a
fraction of total electrons and energy originated from the electron
beam. In order to compute the electron deposition distributions,
these quantities are tracked continuously in the simulation. The
electron density accumulated at various locations within the med-
ium can be easily accounted for since each statistical ensemble
represents a fixed number of electrons. Whenever an ensemble ex-
its the workpiece, its energy is considered as a loss. However, when
the energy of the ensemble falls below the threshold limit, the
electron density at that particular location will be updated accord-
ingly, and hence contribute to the total electron density deposition
distributions:

ncurrent
MC;totalðx; y; zÞ ¼ nprev

MC;totalðx; y; zÞ þ 1: ð19Þ

In the case of optical phonon generations by the energetic elec-
trons, the storing array for the generation is updated at the position
where an optical phonon is emitted, which is expressed as:

Ecurrent
MC;totalðx; y; zÞ ¼ Eprev

MC;totalðx; y; zÞ þ �hxLO: ð20Þ



Table 1
List of thermophysical properties of silicon used in the simulation.

Thermophysical properties Equations and
parameters

Reference(s)

Electron momentum relaxation time, sm sm ¼ aþ bðc� 1Þ þ c exp½�dðc� 1Þ�½ps�c ¼We=0:025; a ¼ 0:0681;

b ¼ �0:0023; c ¼ 0:2051; d ¼ 0:9547

Romano and Russo [29]

Electron thermal conductivity, ke ke ¼ nesm k2
B Te

me
ðr þ 2:5Þ½W=m K�; r ¼ �2 Majumdar [19]

Electron-optical-phonon relaxation time, se-LO se-LO ¼ aþ bðc� 1Þ þ c exp½�dðc� 1Þ�½ps�c ¼We=0:025; a ¼ 0:1731;

b ¼ 0:0313; c ¼ 0:2382; d ¼ 0:5167

Romano and Russo [29]

Optical-acoustic phonon relaxation time, sLO-A 8 [ps] Majumdar [19]
Optical phonon heat capacity, CLO (Einstein’s model) CLO ¼ 3gkBðhLO

TLO
Þ2 expðhLO=TLOÞ
½expðhLO=TLOÞ�1�2

½J=m3 � K��hxLO ¼ 62½meV�;

hLO ¼ �hxLO
kB
¼ 720½K�g ¼ 6:02�1023 ½atoms=mol��2;330½kg=m3 �

28�10�3 ½kg=mol�
¼ 5:01� 1028½atoms=m3�

Majumdar [19], Ziman [30]

Acoustic phonon heat capacity, CA (Debye’s model) CA ¼ 9gkBðTA
hD
Þ3
R hD

0 =TA
x4 ex

ðex�1Þ2
dx½J=m3 K�hD ¼ 625½K� Ziman [30]

Acoustic phonon thermalconductivity, kA kA ¼ 1:585�105

T1:23
A

½W=m� K�; TA P 300½K� Sim et al. [31]

B.T. Wong, M.P. Mengüç / International Journal of Heat and Mass Transfer 52 (2009) 2632–2645 2637
In Eqs. (19) and (20), the subscript ‘MC’ means raw data from
MC simulation, which require proper normalizations given in
Eqs. (23) and (24).

The MC simulation in this work also accounts for secondary
electrons. These are energetic electrons generated within the med-
ium due to momentum and energy transfer from primary electrons
(i.e., electrons from the electron beam). Secondary electrons are
capable of exiting the medium when their energies are sufficient
to overcome the potential of the surface. Similarly, secondary elec-
trons follow the same scattering probabilities as the primary elec-
trons and contribute to the total deposition distributions. In the
case when a secondary electron is generated, the electron density
at that location will be reduced accordingly once the electron starts
propagating elsewhere within the medium. When the secondary
electron energy falls below the threshold value, Eq. (19) is applied
at the corresponding location.

Secondary electrons can be generated from the inner-shell elec-
trons or outer-shell electrons depending on the amount of energy
transfer from the primary electrons. Here it is assumed that a sec-
ondary electron emerges from the inner-shell electrons when the
amount of energy transfer, DE, is greater than the electron binding
energy, Eb (i.e., �100 eV in silicon); the energy of this secondary
electron is given as (DE � Eb). If the energy transfer is smaller than
Eb but larger than Ep, a secondary electron is generated with energy
of (DE � Ep), where Ep is the peak plasmon energy. Electron energy
is assumed to be lost if it is used to overcome the electron binding
energy or to generate plasmon.

Upon hitting a surface, an electron ensemble is either reflected
or refracted, which is determined by drawing a random number.
This random number is compared against the transmission func-
tion [23], T:

TðE;bÞ ¼
4ð1�U0=E cos2 bÞ1=2

½1þð1�U0=E cos2 bÞ1=2 �2
if E cos2 b > U0;

0 else:

(
ð21Þ

If the random number is smaller than T, then the ensemble is
assumed refracted; otherwise, it is reflected. Once the ensemble
is refracted, the exiting angle is altered to b’ from its original angle
b following the relation [3]:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E� U0

p
sin b0 ¼

ffiffiffi
E
p

sin b: ð22Þ

It is clear from Eq. (21) that an electron ensemble would not
exit the medium if its energy is below U0, which is equivalent to
the surface potential.

Once the tracings of the statistical ensembles are completed,
the tallied electron density and energy are normalized using the
total number of statistical ensembles considered, the total elec-
tron-beam energy, and the volume of the computational element
in order to yield the statistical meaningful distributions. The nor-
malizations are given as:

nMC;Norðx; y; zÞ ¼
nMC;totalðx; y; zÞ

NdV
; ð23Þ

EMC;Norðx; y; zÞ ¼
EMC;totalðx; y; zÞ

NEbeamdV
: ð24Þ

The distributions computed using Eqs. (23) and (24) are three-
dimensional. Since the incident electron beam is perpendicular to
the surface of the workpiece, it is possible to convert these distri-
butions into two dimensions. However, we keep the generality of
the simulations without the 2D conversion; this generality will en-
able us to consider an oblique electron beam in the future. In this
study, since the EPHDEs are modeled in the x- and z-directions for
the sake of simplicity and as our first approximation to produce in-
sights to the electron-beam heating phenomena, the cross sections
of these MC distributions at y = 0 are extracted and treated as the
source generations in the EPHDEs (which are discussed in the next
section); they are given as:

_ne;genðx; zÞ ¼
Ibeam

e
nMC;Norðx; y ¼ 0; zÞ; ð25Þ

_WLO;genðx; zÞ ¼
EbeamIbeam

e
EMC;Norðx; y ¼ 0; zÞ; ð26Þ

where e is the coulomb charge, Ebeam the initial beam energy, and
Ibeam the electric current of the beam. Eq. (25) is the generated local
electron density while Eq. (26) gives the optical-phonon generation
by the electron beam.

2.2. Electron–phonon hydrodynamic equations

When electrons lose energy until several electron-volts, elec-
tron–phonon interactions become important, and correct scatter-
ing cross sections are required to accurately represent the
physics of scattering these electrons. Since electron–phonon scat-
tering is greatly governed by the temperature inside the material,
the temperature profiles need to be predicted accurately. This
necessitates the use of quite general EPHDEs in order to correctly
represent the physics of these electrons. Consequently, electron
deposition distributions at low electron energy calculated by the
MC simulation need to be transferred to the EPHDEs to further
study the impact of the electron beam on the local temperature
distribution.

Coupling between results from the MC simulation and the EPH-
DEs requires careful consideration in terms of electron density and
energy. The MC simulation for the electron-beam propagation is
constructed such a way that electrons with varying energy levels
are considered where elastic and inelastic scatterings of electrons



Fig. 4. (a) Backscattering yield comparison between this work and other results
published in the literature. (b) Backscattering yield comparison between this work
and other results published in the literature. Data points are directly obtained from
the database compiled by Joy [17] (for the complete reference list, refer to the
database). The backscattering yield includes electrons that are scattered back at the
top surface with energy greater than 50 eV. Backscattered electrons with energy
less than 50 eV contribute to the secondary electron yield.

Fig. 5. The electron density deposition and the optical phonon generation distri-
bution inside silicon (see Fig. 1 for inputs parameters).
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are included. Essentially, MC simulation provides the solution for
the EBTE, which is an intensity form of the Boltzmann transport
equation (BTE) [5]. On the contrary, the EPHDEs are derived using
the moments of the BTE where averaging effect over the energy
spectrum of electrons is included [5], and they are quite useful
for studying the interactions between electrons and phonons due
to electric field and thermal gradient. In the EPHDEs, electrons
and phonons are represented by the corresponding averaged den-
sity, momentum, and energy. As a result, detailed electron scatter-
ing directions and individual electron energy are not considered.
Statistical results from the MC simulation of the electron beam
are incorporated into the EPHDEs through source generation terms
such as electron density and energy deposition distributions.

There are two important assumptions implied in this coupling
approach. First of all, the directional and energy dependence of
the electron propagation calculated in the electron-beam MC sim-
ulation become obsolete once the EPHDEs are utilized in which
only average quantities are computed. Secondly, the induced elec-
tric potential and temperature should not have any influence on
the high-energy electron trajectories in the MC simulation. This
is true in this work especially the potential induced by the electron
beam and the applied voltage are much less than the initial beam
energy, as we shall see in the simulation results. Should this condi-
tion be violated, then a different coupling approach should be used.
This condition will be not considered as it is out of scope in this
study.

The general EPHDEs can be found in Refs. [5,11,19,24,25], and
they can be simplified to yield:

r2/e ¼
e
e
ðne � nDÞ; E

*

¼ �r/; ð27Þ
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The momentum (P) and total energy (W) of the electrons are re-
lated to the velocity and density following these expressions:

P
*

e ¼ menev
*

e; ð33Þ

We ¼
3
2

nekBTe þ
1
2

nemev2
e : ð34Þ
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Eq. (27) is the Poisson equation which determines the potential
and the corresponding electric field inside the material based on
the electron density distribution. Electron density is determined
using the continuity equation, which is given by Eq. (28). The
changes to the electron density due to the impinging electron
beam are present in _ne;gen and it is obtained from the MC simulation
(see Eq. (25)). Eq. (29) enforces momentum conservation of elec-
trons and determines the electron velocity vector. Eqs. (30)–(32)
are conservation of electron energy, optical phonon energy, and
acoustic phonon energy. These equations are set up such a way
that hot, energized electrons from the electron beam produce opti-
cal phonons inside the target object, which is described by _WLO;gen

in Eq. (31) and determined from the MC simulation (see Eq. (26)).
Eq. (30) captures the disturbance that the electron beam creates to
the electron density and the electron temperature inside the mate-
rial while these electrons exchange energy with optical phonons.
Subsequently, through coupling between optical phonons and
acoustic phonons, the acoustic phonon energy is increased. De-
tailed information regarding the derivation of these equations
and how these averaged electron density, momentum, and temper-
atures are obtained are published in Ref. [5].

The coupling between optical phonons and acoustic phonons is
done using a simple relaxation time approach. Since optical pho-
nons have essentially zero velocity, the spatial diffusion term is
Fig. 6. (a) Electron density, (b) electron temperature, and (c) x-component of electron
transient maximum phonon temperature computed using two different time steps is also
the following figures.
omitted. Hot electrons typically emit optical phonons, which then
increases the optical phonon temperature. Subsequently, optical
phonons share the additional energy with acoustic phonons, which
is accounted using the relaxation time sLO-A. Unlike optical pho-
nons, acoustic phonons possess finite thermal velocity. Therefore,
the acoustic phonon thermal conductivity kT,A is used in the energy
conservation equation of acoustic phonons to account for spatial
heat diffusion. The relaxation time sLO-A is typically on the order
of picoseconds and for silicon it is approximately 8 ps according
to Majumdar [19]. There is no detailed information available
regarding this issue; therefore, as our first approximation, we
chose to use this value of 8 ps.

Several assumptions are implied in this version of the EPHDEs.
First, the effective mass of the electrons is assumed to be a con-
stant. Second, the advection term in the electron momentum con-
servation is neglected for the sake of simplicity. Third, heat
conduction is treated as diffusive for both electrons and phonons.
For electrons, such assumption is justified since wavelengths of
electrons are generally much smaller than the thickness of the film
considered in this work, and the heat transport is still diffusive
[26]. However, for phonons, this assumption might be question-
able because of the possibility of having ballistic/semi-ballistic nat-
ure of the transport as wavelengths of phonons are typically in the
range of tens of nanometers to several microns depending on their
velocity at z = 25, 170, and 198 nm computed using different grid sizes. (d) The
given. The complete distributions of these plots along the x- and z-axis are given in
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energies, which may exceed the film thickness. Hence, ballistic/
semi-ballistic behavior [11,25,27,28] could be important. In this
work, this behavior is neglected as additional studies and careful
considerations are required to correctly couple electrons and pho-
nons when the transport is of ballistic nature, and these are left for
future work.

Eqs. (28)–(32) require several thermophysical properties and
they are listed in Table 1 following published data taken from
various sources. The boundaries are of ohmic type, which as-
sumes equilibrium at the contacts, and they can be expressed
as follows:

/e ¼
0 x¼ 0;

1 x¼ 1000 nm:

�
ð35Þ

nD ¼
3� 1017 cm�3 06 x6 100 nm;9006 x6 1000 nm;

1:5� 1017 cm�3 else:

(
ð36Þ

Te ¼ 300 K 8x¼ 0 and x¼ 1000 nm; ð37Þ
TLO ¼ 300 K 8x¼ 0 and x¼ 1000 nm; ð38Þ
TA ¼ 300 K 8x¼ 0 and x¼ 1000 nm: ð39Þ

Insulated boundaries are assumed for the rest. Since potential,
electron density, and electron temperature are held fixed at the
boundaries, the velocities at the boundaries can be determined
easily from the gradients of these values following Eq. (29).

In this work, we discretize the EPHDEs in x- and z-directions
using a finite-difference method following the work published by
Fig. 7. The electron density and the electric potential inside the medium with (a and b) a
various sources [29,32–38]. The time derivation is discretized
using the first order approximation while the spatial discretization
is performed using a second-order central-difference scheme. The
upwind method is utilized to treat the flow field of electrons. The
staggered grid scheme is used in the simulation [39]. In this
scheme, scalar quantities are evaluated at the centers of the com-
putational control volumes, and the velocity vectors and electric
field are evaluated at the boundaries of the control volumes (i.e.,
between center points). The discretized equations are then solved
using the successive over-relaxation scheme [40].
3. Results and discussions

3.1. Electron backscattering yields – verification of Monte Carlo
simulation

The MC simulation code developed in this work was first verified
against existing data obtained from the literatures. Fig. 4a shows
the backscattering (BS) yield for silicon computed using the MC
simulation developed in this work and published data obtained
from the database compiled by Joy [17]. The BS yield is obtained
by recording the total number of electrons backscattered off the
medium with energy greater than 50 eV, and normalized by the to-
tal number of incident electrons. Five separate runs with 5000 sta-
tistical ensembles each are performed to access the statistical errors
for the BS yield. Results from the MC simulation coincide with the
nd without (c and d) the impinging electron beam (see Fig. 1 for inputs parameters).
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various published data for electron-beam energies ranging from 0.1
to 10 keV. However, some discrepancies were found, particularly, in
the energy range less than a few keV. In the current MC simulation,
the code seems to produce more backscattered secondary electrons
than primary electrons at low beam energy when compared to the
published data. This reveals the weakness of the current MC simu-
lation in predicting electron-beam propagation inside a semicon-
ductor or an insulator for relatively low-energy electron beam.

A remedy for this is to account for the electron scatterings using
different approach such as those described by Fitting’s group [41–
43], which uses quasi-elastic acoustic phonon scattering, optical
phonons, and impact ionization instead of Mott scattering and
dielectric energy losses. For backscattered electrons with energies
less than 50 eV, which are called the secondary electron (SE) yield,
a similar plot can be obtained (see Fig. 4b). In this case the SE yield
for various electron-beam energies agree with the published data
to an extent, verifying the correct implementation of the MC sim-
ulation. Even though there are some minor discrepancies between
the published experimentally data and the MC simulation, the sim-
ulation in this work is sufficient to provide accurate estimates of
the electron deposition distributions inside the thin film following
the correct physics.

3.2. Monte Carlo simulation of electron deposition distributions

Electron deposition distributions for the case where impulse
incident beam is considered are first obtained using 10,000 statis-
Fig. 8. The electric field distribution inside silicon with (a and b) and withou
tical ensembles. The initial electron-beam energy is set to 1 keV
with a Gaussian beam radius of 100 nm and an electric current of
1 lA. These results are then convoluted using the Gaussian beam
profile defined in Eq. (2) to produce the final desired distributions
for the EPHDEs. The width of silicon thin film is assumed 1000 nm
while the thickness is 200 nm. These dimensions ensure that trans-
mission of the electron beam through the target is not possible at
all. A voltage difference of 1 V is applied across the silicon thin film.

Fig. 5a depicts the normalized number of electron deposited in-
side the workpiece per unit volume inside the thin film. A positive
electron deposition number indicates that there is accumulation
of electrons while a negative electron deposition number implies
that electrons are lost. It can be seen from the figure that electrons
are depleted near the surface of incidence for the electron beam
while electrons accumulate below the depletion region. Due to
the initial high-energy electrons, secondary electrons are gener-
ated near the surface, and these electrons are capable of propagat-
ing deeper into the medium or leaving the surface depending on
their energies; hence, depletion occurs. On the other hand, pri-
mary/secondary electrons penetrate into the material and reside
there after suffering series attenuations, which then create the re-
gion of charge accumulation as evident in the figure. The corre-
sponding optical phonon generation distribution inside silicon is
shown in Fig. 5b. As expected, the optical phonon generation distri-
bution inside the workpiece concentrates near the area of inci-
dence following a Gaussian-like profile. The distribution peaks
near the surface and decreases rapidly as the distance increases.
t (c and d) the incident electron beam (see Fig. 1 for inputs parameters).
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The two computational parameters that greatly influence the elec-
tron density and the optical phonon generation distributions are
the initial energy of the electron beam and the incident beam pro-
file. When the initial electron-beam energy is higher, the distribu-
tions would be stretched in the direction of penetration since the
depth of penetration is increased. In addition, these distributions
can be stretched in the lateral direction as well by manipulating
the Gaussian-beam radius. Larger radius of the beam creates wider
spread of the incident electrons as well as the optical phonon
generation.

3.3. Electrical and thermal responses of silicon

By coupling the results obtained from the MC simulation, elec-
tron and phonon temperatures inside silicon can be determined by
taking the electrical response of the workpiece into consideration
and using the EPHDEs. After conducting several numerical experi-
ments, the grid resolutions are determined to be Dx = 5 nm and
Dz = 2 nm. The time step used in the simulation is set to be
Dt = 2.5 fs. Further reduction in the grid step sizes and time step
does not improve the accuracy of the simulation results signifi-
cantly. Fig. 6 shows comparisons between results obtained using
different grid step sizes at various z-locations (i.e., z = 25, 170,
and 198 nm). By halving the grid step size in the x-direction while
maintaining other parameters constant, it is observed that the
electron density, electron temperature, and x-component of elec-
tron velocity profiles at different z-locations remain almost identi-
cal, indicating the convergence of the solution. Similarly, halving
Fig. 9. The velocity profiles of electrons due to applied voltage with (a and b) and
the grid step size in the z-direction yields the identical distribu-
tions as evident in the figure. In addition, the transient maximum
phonon temperature converges to the same profile when the time
step is halved from 5 fs to 2.5 fs. Other simulation plots are not gi-
ven here to keep the manuscript within reasonable.

Fig. 7 depicts the electron density and the voltage distributions
as a result of electron-beam penetration. For the sake of compari-
son, simulation results of the case without the incident electron
beam are shown in the corresponding figure to indicate the degree
of perturbation to the computed distributions when an electron
beam is present. As observed from Fig. 5, electrons are depleted
around the area of incident beam; this is expected as it correlates
directly with electron density deposition plotted in Fig. 5. The
depletion is noticeable at the vicinity of x = 500 nm; however, the
change in the local electron density does not significantly change
the local voltage distribution. There is only a slight alteration of
the voltage curve near x = 500 nm, yet, the change is minor and al-
most unnoticeable for the case we consider here.

The electric field distributions inside the workpiece are de-
picted in Fig. 8. The field is decomposed into x- and z-components.
In the case where the electron beam is not present, the x-electric
field distribution remains smooth near the center of the top sur-
face. When an electron beam impinges on the surface, the electric
field distributions are altered. These perturbations are induced
such a way that electrons are being pushed away from the area
of incidence of the beam. In addition, the presence of the electron
beam induces an electric field distribution in the z-direction. It is
clear that electrons are being driven away by the energetic electron
without (c and d) impinging electron beam (see Fig. 1 for inputs parameters).
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beam, and hence the depletion region is created as shown in Fig. 7.
The corresponding velocity distributions are depicted in Fig. 9. In
Fig. 9c, we see that electrons accelerate starting from x = 0 bound-
ary and reach to a uniform velocity of approximately 0.07 � 106 m/
s, then followed by a deceleration near x = 1000 nm boundary
when there is no external perturbation for an electron beam. With
an impinging electron beam near the middle of the workpiece (i.e.,
x � 500 nm, y = 200 nm in Fig. 9a and b), the local velocity field is
altered where electrons are being depleted near the depth of pen-
Fig. 10. The electron, optical and acoustic phonon temperatures inside the medium with
etration of the beam due to the generated secondary electron that
escape the surface.

Fig. 10 depicts the temperature distributions of electrons, opti-
cal phonons, and acoustic phonons with and without the imping-
ing electron beam. We observe that by applying a potential
difference of 1 V, the electron temperature reaches around 500 K
while the optical and acoustic phonon temperatures do not break
1 K beyond room temperature at steady-state condition. However,
when an electron beam with an initial energy of 1 keV impinges on
(a–c) and without (d–f) impinging electron beam (see Fig. 1 for inputs parameters).



Fig. 11. The transient maximum electron and phonon temperatures within silicon
for electron-beam and Joule heating (see Fig. 1 for inputs parameters).
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the workpiece, the local electron temperature at the location
where the beam strikes is raised to approximately 750 K. This is
accompanied by about 35 K increase in the local optical-phonon
temperature and 25 K in the local acoustic phonon temperature.
It is obvious that the optical-phonon temperature is increased as
a result of the LO-phonon generation by the electron beam, and
this additional energy is then transferred to the acoustic mode
through phonon-phonon collisions. However, the local tempera-
ture increase in electrons is caused indirectly by the electron beam.
From the MC results given in Fig. 5, we observe that the material is
losing electrons due to the secondary electron emission layers be-
low the surface. The local electron density decreases while the ap-
plied potential difference remains unaltered. As a result, the local
electron temperature around the depletion region increases.

The transient maximum electron and phonon temperatures
within silicon workpiece as a result of electron-beam heating are
given in Fig. 11. Notice that the electron temperature reaches stea-
dy-state value a few nanoseconds faster than the phonon temper-
atures, and these transient predictions are mostly sensitive to the
input parameters. As discussed before, the applied voltage and
the current of the electron beam are increased gradually in order
to avoid the abrupt initial conditions which might cause conver-
gence problem in the EPHDEs. Given the set of input parameters
used in this work, the optical-phonon temperature is higher than
the acoustic-phonon temperature at all times because of the con-
tinuous electron-beam heating.
4. Conclusions

We have discussed a detailed analysis of the electrical and ther-
mal responses of a silicon workpiece to an impinging electron
beam and Joule heating. The model is based on the numerical solu-
tion of EPHDEs and MC simulation of EBTE. A MC model was devel-
oped for this purpose, which accounts for the secondary electron
generation and utilizes Mott’s scattering cross-section and the
Penn’s dielectric function. Energetic electrons originated from the
electron beam were traced statistically using the scattering proba-
bilities derived from the Mott’s cross section, the energy-loss func-
tion and the electron-optical phonon interaction. Secondary
electrons were treated following similar scattering probabilities
of the primary electrons. The backscattering and secondary elec-
tron yields were verified against the existing data published in
the literature. A number of steps were introduced to calculate
the electron density and optical-phonon generation within silicon,
which served as the sources of heat generation in the EPHDEs. The
coupling between the statistical results from the MC simulation
and the EPHDEs was done carried on assuming that neither the
thermal gradient nor the electric field induced by the electron
beam were large enough to alter the propagation of the beam.
Hence, the electron density and the optical phonon generation dis-
tributions remained unaltered throughout the hydrodynamic
simulations.

Results show that an electron beam is capable of creating a
depletion region near the surface of incidence while causing non-
equilibrium between electron and phonon temperatures. The ini-
tial beam energy used for these results is 1 keV with a current of
1 lA and a Gaussian radius of 100 nm. When it is applied to a sil-
icon target of 1000 � 200 nm dimensions, maximum local electron
temperature is raised to 750 K and that of optical-phonon temper-
ature to 335 K. An increase of 25 K in the local acoustic tempera-
ture is also observed. These results suggest a potential
application where an electron beam can be used to locally alter
the electron density profile while the device is operating at a given
applied voltage. Results for other electron beam energies and
materials are not included in this paper. Additional simulations
with different materials and design parameters in terms of the
electron beam and dimensions of the structure will be reported
in another work in the future.

The solution methodology can be further improved by itera-
tively calculating the deposition distributions while solving the
EPHDEs, although such an approach is usually computational
intensive. In addition, the deposition distributions obtained from
the MC simulation can be further improved by using a different ap-
proach to treat the elastic and inelastic scattering (i.e., quasi-pho-
non scattering model) as suggested by Fitting’s group [41–43]. The
physics of the EPHDEs can also be enhanced by replacing the pho-
non conservation equations with a MC simulation in phonon trans-
port [28] to account for the ballistic/semi-ballistic behavior of
phonons.
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